| # |
Algebra (L) |
Fundamental group (H) |
Generators of H (k) |
| 1 |
\( 6 A_1 \) |
\(Z_2^6\) |
| 0 |
0 |
0 |
0 |
0 |
1 |
| 0 |
0 |
0 |
0 |
1 |
0 |
| 0 |
0 |
0 |
1 |
0 |
0 |
| 0 |
0 |
1 |
0 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
0 |
|
| 2 |
\( 2 B_3 \) |
\(Z_2^2\) |
|
| 3 |
\( 3 C_2 \) |
\(Z_2^3\) |
|
| 4 |
\( 2 A_1+2 C_2 \) |
\(Z_2^4\) |
| 0 |
0 |
0 |
1 |
| 0 |
0 |
1 |
0 |
| 0 |
1 |
0 |
0 |
| 1 |
0 |
0 |
0 |
|
| 5 |
\( B_3+C_2+A_1^2 \) |
\(Z_2^2\) |
|
| 6 |
\( A_1+2 C_2+A_1^2 \) |
\(Z_2^3\) |
|
| 7 |
\( A_1+B_3+2 A_1^2 \) |
\(Z_2^2\) |
|
| 8 |
\( B_4+2 A_1^2 \) |
\(Z_2\) |
|
| 9 |
\( 2 C_2+2 A_1^2 \) |
\(Z_2^2\) |
|
| 10 |
\( B_3+3 A_1^2 \) |
\(Z_2\) |
|
| 11 |
\( A_1+C_2+3 A_1^2 \) |
\(Z_2^2\) |
|
| 12 |
\( 2 A_1+4 A_1^2 \) |
\(Z_2^2\) |
|
| 13 |
\( C_2+4 A_1^2 \) |
\(Z_2\) |
|
| 14 |
\( 3 A_1+C_2+A_1^4 \) |
\(Z_2^4\) |
| 0 |
0 |
0 |
1 |
0 |
| 0 |
0 |
1 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
|
| 15 |
\( B_3+C_2+A_1^4 \) |
\(Z_2^2\) |
|
| 16 |
\( A_1+2 C_2+A_1^4 \) |
\(Z_2^3\) |
|
| 17 |
\( A_1+B_3+A_1^2+A_1^4 \) |
\(Z_2^2\) |
|
| 18 |
\( B_4+A_1^2+A_1^4 \) |
\(Z_2\) |
|
| 19 |
\( 2 A_1+C_2+A_1^2+A_1^4 \) |
\(Z_2^3\) |
| 0 |
0 |
1 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
|
| 20 |
\( 2 C_2+A_1^2+A_1^4 \) |
\(Z_2^2\) |
|
| 21 |
\( B_3+2 A_1^2+A_1^4 \) |
\(Z_2\) |
|
| 22 |
\( A_1+C_2+2 A_1^2+A_1^4 \) |
\(Z_2^2\) |
|
| 23 |
\( 2 A_1+3 A_1^2+A_1^4 \) |
\(Z_2^2\) |
|
| 24 |
\( C_2+3 A_1^2+A_1^4 \) |
\(Z_2\) |
|
| 25 |
\( 4 A_1+2 A_1^4 \) |
\(Z_2^4\) |
| 0 |
0 |
0 |
1 |
0 |
0 |
| 0 |
0 |
1 |
0 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
0 |
|
| 26 |
\( A_1+B_3+2 A_1^4 \) |
\(Z_2^2\) |
|
| 27 |
\( B_4+2 A_1^4 \) |
\(Z_2\) |
|
| 28 |
\( 2 A_1+C_2+2 A_1^4 \) |
\(Z_2^3\) |
| 0 |
0 |
1 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
|
| 29 |
\( 2 C_2+2 A_1^4 \) |
\(Z_2^2\) |
|
| 30 |
\( 3 A_1+A_1^2+2 A_1^4 \) |
\(Z_2^3\) |
| 0 |
0 |
1 |
0 |
0 |
0 |
| 0 |
1 |
0 |
0 |
0 |
0 |
| 1 |
0 |
0 |
0 |
0 |
0 |
|
| 31 |
\( B_3+A_1^2+2 A_1^4 \) |
\(Z_2\) |
|
| 32 |
\( A_1+C_2+A_1^2+2 A_1^4 \) |
\(Z_2^2\) |
|
| 33 |
\( 2 A_1+2 A_1^2+2 A_1^4 \) |
\(Z_2^2\) |
|
| 34 |
\( C_2+2 A_1^2+2 A_1^4 \) |
\(Z_2\) |
|
| 35 |
\( A_1+3 A_1^2+2 A_1^4 \) |
\(Z_2\) |
|
| 36 |
\( 4 A_1^2+2 A_1^4 \) |
\(Z_1\) |
|
| 37 |
\( 3 A_2^2 \) |
\(Z_1\) |
|
| 38 |
\( 3 A_2^2 \) |
\(Z_3\) |
|
| 39 |
\( B_4+A_2^2 \) |
\(Z_2\) |
|
| 40 |
\( B_3+A_1^2+A_2^2 \) |
\(Z_2\) |
|
| 41 |
\( C_2+2 A_1^2+A_2^2 \) |
\(Z_2\) |
|
| 42 |
\( A_1+3 A_1^2+A_2^2 \) |
\(Z_2\) |
|
| 43 |
\( 4 A_1^2+A_2^2 \) |
\(Z_1\) |
|
| 44 |
\( B_3+A_1^4+A_2^2 \) |
\(Z_2\) |
|
| 45 |
\( C_2+A_1^2+A_1^4+A_2^2 \) |
\(Z_2\) |
|
| 46 |
\( A_1+2 A_1^2+A_1^4+A_2^2 \) |
\(Z_2\) |
|
| 47 |
\( 3 A_1^2+A_1^4+A_2^2 \) |
\(Z_1\) |
|
| 48 |
\( C_2+2 A_1^4+A_2^2 \) |
\(Z_2\) |
|
| 49 |
\( A_1+A_1^2+2 A_1^4+A_2^2 \) |
\(Z_2\) |
|
| 50 |
\( 2 A_1^2+2 A_1^4+A_2^2 \) |
\(Z_1\) |
|
| 51 |
\( C_2+2 A_2^2 \) |
\(Z_2\) |
|
| 52 |
\( A_1+A_1^2+2 A_2^2 \) |
\(Z_2\) |
|
| 53 |
\( 2 A_1^2+2 A_2^2 \) |
\(Z_1\) |
|
| 54 |
\( A_1+A_1^4+2 A_2^2 \) |
\(Z_2\) |
|
| 55 |
\( A_1^2+A_1^4+2 A_2^2 \) |
\(Z_1\) |
|
| 56 |
\( 2 A_1^4+2 A_2^2 \) |
\(Z_1\) |
|
| 57 |
\( 2 A_3^2 \) |
\(Z_1\) |
|
| 58 |
\( 3 A_1^2+A_3^2 \) |
\(Z_1\) |
|
| 59 |
\( 2 A_1^2+A_1^4+A_3^2 \) |
\(Z_1\) |
|
| 60 |
\( A_1^2+2 A_1^4+A_3^2 \) |
\(Z_1\) |
|
| 61 |
\( A_1^2+A_2^2+A_3^2 \) |
\(Z_1\) |
|
| 62 |
\( A_1^4+A_2^2+A_3^2 \) |
\(Z_1\) |
|
| 63 |
\( 2 A_1^2+A_4^2 \) |
\(Z_1\) |
|
| 64 |
\( A_1^2+A_1^4+A_4^2 \) |
\(Z_1\) |
|
| 65 |
\( A_2^2+A_4^2 \) |
\(Z_1\) |
|
| 66 |
\( A_1+B_3+C_2^2 \) |
\(Z_2^2\) |
|
| 67 |
\( B_4+C_2^2 \) |
\(Z_2\) |
|
| 68 |
\( 2 C_2+C_2^2 \) |
\(Z_2^2\) |
|
| 69 |
\( B_3+A_1^2+C_2^2 \) |
\(Z_2\) |
|
| 70 |
\( A_1+C_2+A_1^2+C_2^2 \) |
\(Z_2^2\) |
|
| 71 |
\( 2 A_1+2 A_1^2+C_2^2 \) |
\(Z_2^2\) |
|
| 72 |
\( C_2+2 A_1^2+C_2^2 \) |
\(Z_2\) |
|
| 73 |
\( A_1+3 A_1^2+C_2^2 \) |
\(Z_2\) |
|
| 74 |
\( 4 A_1^2+C_2^2 \) |
\(Z_1\) |
|
| 75 |
\( B_3+A_1^4+C_2^2 \) |
\(Z_2\) |
|
| 76 |
\( A_1+C_2+A_1^4+C_2^2 \) |
\(Z_2^2\) |
|
| 77 |
\( 2 A_1+A_1^2+A_1^4+C_2^2 \) |
\(Z_2^2\) |
|
| 78 |
\( C_2+A_1^2+A_1^4+C_2^2 \) |
\(Z_2\) |
|
| 79 |
\( A_1+2 A_1^2+A_1^4+C_2^2 \) |
\(Z_2\) |
|
| 80 |
\( 3 A_1^2+A_1^4+C_2^2 \) |
\(Z_1\) |
|
| 81 |
\( C_2+A_2^2+C_2^2 \) |
\(Z_2\) |
|
| 82 |
\( A_1+A_1^2+A_2^2+C_2^2 \) |
\(Z_2\) |
|
| 83 |
\( 2 A_1^2+A_2^2+C_2^2 \) |
\(Z_1\) |
|
| 84 |
\( A_1+A_1^4+A_2^2+C_2^2 \) |
\(Z_2\) |
|
| 85 |
\( A_1^2+A_1^4+A_2^2+C_2^2 \) |
\(Z_1\) |
|
| 86 |
\( 2 A_2^2+C_2^2 \) |
\(Z_1\) |
|
| 87 |
\( A_1^2+A_3^2+C_2^2 \) |
\(Z_1\) |
|
| 88 |
\( A_1^4+A_3^2+C_2^2 \) |
\(Z_1\) |
|
| 89 |
\( A_4^2+C_2^2 \) |
\(Z_1\) |
|
| 90 |
\( 2 A_1+2 C_2^2 \) |
\(Z_2^2\) |
|
| 91 |
\( C_2+2 C_2^2 \) |
\(Z_2\) |
|
| 92 |
\( A_1+A_1^2+2 C_2^2 \) |
\(Z_2\) |
|
| 93 |
\( 2 A_1^2+2 C_2^2 \) |
\(Z_1\) |
|
| 94 |
\( A_2^2+2 C_2^2 \) |
\(Z_1\) |
|
| 95 |
\( 2 C_3^2 \) |
\(Z_1\) |
|
| 96 |
\( B_3+C_3^2 \) |
\(Z_2\) |
|
| 97 |
\( C_2+A_1^2+C_3^2 \) |
\(Z_2\) |
|
| 98 |
\( A_1+2 A_1^2+C_3^2 \) |
\(Z_2\) |
|
| 99 |
\( 3 A_1^2+C_3^2 \) |
\(Z_1\) |
|
| 100 |
\( C_2+A_1^4+C_3^2 \) |
\(Z_2\) |
|
| 101 |
\( A_1+A_1^2+A_1^4+C_3^2 \) |
\(Z_2\) |
|
| 102 |
\( 2 A_1^2+A_1^4+C_3^2 \) |
\(Z_1\) |
|
| 103 |
\( A_1+A_2^2+C_3^2 \) |
\(Z_2\) |
|
| 104 |
\( A_1^2+A_2^2+C_3^2 \) |
\(Z_1\) |
|
| 105 |
\( A_1^4+A_2^2+C_3^2 \) |
\(Z_1\) |
|
| 106 |
\( A_3^2+C_3^2 \) |
\(Z_1\) |
|
| 107 |
\( A_1+C_2^2+C_3^2 \) |
\(Z_2\) |
|
| 108 |
\( A_1^2+C_2^2+C_3^2 \) |
\(Z_1\) |
|
| 109 |
\( 2 A_1^2+C_4^2 \) |
\(Z_1\) |
|
| 110 |
\( A_1^2+A_1^4+C_4^2 \) |
\(Z_1\) |
|
| 111 |
\( A_2^2+C_4^2 \) |
\(Z_1\) |
|
| 112 |
\( C_2^2+C_4^2 \) |
\(Z_1\) |
|
| 113 |
\( A_1^2+C_5^2 \) |
\(Z_1\) |
|
| 114 |
\( A_1^4+C_5^2 \) |
\(Z_1\) |
|